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The acoustic Faraday rotation in the 4f paramagnet Tb3Ga5O12 has recently been observed by Sytcheva
et al. �unpublished�. As in earlier examples the rotation angle per unit length of transverse acoustic modes was
found to depend linearly on sound frequency. Existing theories for this effect consistently require that it should
vary with the square of the frequency. In the present work a solution for this long-standing problem is
provided. We propose a model based on magnetoelastic interactions with 4f quadrupole moments that includes
both acoustic and optical phonons. The symmetry allows a direct and induced coupling between the latter. This
leads to an indirect acoustic Faraday rotation via the field-induced splitting of doubly degenerate optical
phonon modes. It varies linearly with frequency in accordance with experiment and dominates the rotation
angle. It also explains the observed resonance of the rotation angle in the field range between 17–20 T. The
mechanism is of general validity for non-Bravais lattices and applies to previous examples of the acoustic
Faraday effect.
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I. INTRODUCTION

In crystals with a fourfold uniaxial or higher symmetry
transverse acoustic �a� phonons which propagate along axis
direction are twofold degenerate with perpendicular polariza-
tions of the displacement vector u. Equivalently they may be
described by left �L�- and right �R�-handed circularly polar-
ized phonons which belong to complex-conjugate represen-
tations of the group Gq of the phonon wave vector q which is
aligned with an axis. The degeneracy of these complex con-
jugate modes is ensured by time-reversal invariance. If the
latter is broken by application of a magnetic field the degen-
eracy may be lifted. Depending on field direction this leads
to the Faraday rotation for H �q or Cotton-Mouton effect for
H�q in the long-wavelength limit. Only the former will be
considered here. This means that for fixed sound-wave fre-
quency �a the wave numbers qL and qR of circular polarized
modes will be different. In an ultrasonic experiment a lin-
early polarized transverse mode is generated which may be
described as a superposition of circular modes with equal
amplitudes and phase shift � /2. Since the latter have differ-
ent wave numbers this means that the polarization direction
of the linearly polarized mode will be continuously rotated as
it propagates along the crystal axis. The displacement field of
the acoustic wave is then given by

u�z,t� = A�x̂ cos � + ŷ sin ��exp�i�at − iqz� , �1�

where A is the amplitude, z is the propagation �axis�, and x ,y
are the polarization directions. Furthermore average wave
number q and Faraday rotation angle � are given by

q =
1

2
�qL + qR� � =

1

2
�qL − qR�z � ��z . �2�

Here ���H� is the Faraday rotation angle per unit length.
The splitting between qL and qR wave numbers due to

time-reversal symmetry breaking will only be effective when
the sound waves can couple strongly to magnetic degrees of
freedom. Therefore the acoustic Faraday effect was first ob-

served in magnetically ordered 3d compounds such as
yttrium-iron garnet �YIG� �Refs. 1 and 2� and in paramagnets
with magnetic impurities.3–5 In the former it is due to mag-
netoelastic coupling caused by the strain dependence of the
anisotropy energy of ordered moments.6 It has also been
proposed7 for S=1 /2 paramagnets and for paramagnetic 4f
compounds with general CEF split-level scheme.8 In the lat-
ter case the Faraday effect is due to the magnetoelastic cou-
pling to �2J+1� crystalline electric field �CEF� split 4f states
where J is the total angular momentum. This mechanism was
first found in the paramagnetic phase of CeAl2.9 In a mag-
netic field H �q the magnetoelastic coupling leads to nondi-
agonal quadrupolar susceptibilities of the 4f CEF states re-
sulting in a Faraday rotation of the sound-wave polarization.
Both mechanisms lead to a Faraday rotation angle �� which
increases quadratically with frequency �a. However experi-
mentally in CeAl2 the rotation angle turned out to increase
linearly with sound frequency. This discrepancy has been
unresolved so far. Recent Faraday rotation experiments on
paramagnetic Tb3Ga5O12 or terbium-gallium garnet �TGG�
�Ref. 10� gave the same linear frequency dependence. There-
fore it is clear that the existing theories need to be extended
to explain these experimental findings. We note that the Far-
aday rotation angle, in the magnetically ordered systems
such as YIG, was also predicted to vary with the square of
the sound frequency.1,3 However this has never been tested
experimentally because only a single frequency has been
used in existing experiments.

II. MAGNETOELASTIC COUPLING MECHANISM FOR
ACOUSTIC AND OPTICAL PHONONS

The displacement field of sound waves may be described
by elastic strains which couple to the CEF quadrupolar �or
higher order multipolar� moments of the 4f shell. This causes
a temperature-dependent renormalization of sound velocities
�elastic constants�11 and under suitable conditions a Faraday
rotation of the polarization8 due to the splitting of complex
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conjugate �R,L� acoustic modes. It is natural to expect a
similar effect for doubly degenerate complex conjugate opti-
cal �o� phonons. This has indeed been found in Ref. 12 with
Raman scattering in a magnetic field and explained in Ref.
13. An interesting possibility arises in non-Bravais lattices
with an atomic basis. In the case that acoustic and optical
phonons for q along an axis cause distortions of the same
symmetry they will be coupled, both directly and indirectly
via quadrupole excitations of 4f CEF states. Such an
acoustic-optical �a-o� coupling will lead to an additional con-
tribution to the Faraday rotation which has not been consid-
ered before. This contribution turns out to solve the problem
of the frequency dependence of the rotation angle, both for
TGG and the previous case of CeAl2.

Our starting Hamiltonian therefore has to include a term
�Hph� describing both acoustic and optical phonons. In addi-
tion it contains a part �H4f� corresponding to the CEF-split 4f
electrons and a phonon-4f electron interaction part Hph-4f.
The coupled system is then described by

H = Hph + H4f + Hph-4f . �3�

First we turn to the phonon part. Restricting to modes with q
along ẑ they may be written in terms of acoustic ��q�=aq�

+a−q�
† � and optical ��q�=Aq�+A−q�

† � phonon coordinates
where �=x ,y denotes the two polarizations and aq�

† , Aq�
†

are the usual phonon creation operators.

��z�i� = �
q

Qq
a�q�eiqRi; Q��i� = �

q
Qq

o�q�eiqRi. �4�

Here Ri denotes the lattice sites, furthermore we defined
�N ,M =number and mass of unit cell, respectively�.

Qq
a = iq�2MN�q

a�−1/2; Qq
o = �2MN�q

o�−1/2. �5�

The total phonon Hamiltonian is then given by

Hph = �
q�

�q
a�aq�

† aq� +
1

2
� + �

q�

�q
o�Aq�

† Aq� +
1

2
�

+ �
q�

�q�q��q�
† . �6�

Here we defined �q= iq�E /4M���q
a�q

o�−1/2, where E is the a-o
coupling constant between long-wavelength acoustic strains
and internal displacements of the optical mode. Note that in
this representation Hph has not been completely diagonalized
since there is an interaction term reflecting the fact that
acoustic and optical phonons belong to the same type of
representations of the group Gq of the wave vector.

The lattice vibration modes of the garnet structure
RE3Al5O12, which is isostructural to TGG �space group Oh

10�,
have been classified and discussed in Ref. 14. Due to the
large unit cell there are 240 vibrational modes for q→0. In
addition to the acoustic T1u mode �one longitudinal, two
transverse� there are 17 T1u and 14 T1g optical modes and in
addition 14 T2g and 16 T2u optical modes. For finite q � �001	
the symmetry is reduced from cubic to uniaxial C4v. There-
fore the triply degenerate T1 and T2 modes split into singlet
A and doublet E modes for both acoustic and optical
phonons. The acoustic E modes correspond to the sound
waves with �x ,y� polarization for propagation along z. Be-

cause of their E symmetry they will couple with all doubly
degenerate optical E modes through the background force
constants and the true acoustic eigenmodes are complicated
superpositions of long wavelength and internal displace-
ments. Therefore in a model based on magnetoelastic inter-
actions it is preferable to start with modes having pure
acoustic strain and internal displacements and include the a-o
coupling explicitly as in Eq. �6�. Only in this case the mag-
netoelastic interaction can be written in terms of the simple
strain and displacement amplitudes given in Eq. �5�. In the
model we will include only one representative optical mode.
This may be taken as the lowest T1u or T2g mode which is
around 100 cm−1 in RE3Al5O12 �Ref. 14� and presumably
also in TGG.

The 4f part of the Hamiltonian including the effect of an
applied magnetic field is given by

H4f = �
	ni

E	

	n��
	n
i − h�
i

Jz�i� = �
	ni

Ẽ	n

̃	n
��
̃	n
i,

�7�

where E	 and 

	n� are the zero-field CEF level energies and
states, respectively, and h=gJ�BH�J=6,gJ= 3

2 � is the field
variable. The last expression in the above equation is written

in terms of Zeeman split CEF energies Ẽ	n and states 

̃	n�.
The lattice vibrations couple to the 4f states by changing

the CEF potential due to induced local distortions.11 In this
way the E-type displacements of acoustic and optical modes
will couple to E-type quadrupolar moments �Oxz ,Oyz� of the
4f shell. Then the phonon-4f or magnetoelastic Hamiltonian
is given by

Hph-4f = ga�
iq�

Qq
a�q�O��i�eiqRi + go�

iq�

Qq
o�q�O��i�eiqRi,

�8�

where �=x ,y denotes polarization for phonons and the qua-
drupolar operators O� ��=xz ,yz� are defined by

Oxz = JxJz + JzJx =
1

2
��J+Jz + JzJ+� + �J−Jz + JzJ−�	 ,

Oyz = JyJz + JzJy =
1

2i
��J+Jz + JzJ+� − �J−Jz + JzJ−�	 �9�

with J�=Jx� iJy. Furthermore ga and go are the magneto-
elastic coupling constants for a and o modes, respectively.

III. DYSON EQUATIONS FOR THE PHONON
PROPAGATORS

To obtain the propagating modes in the presence of mag-
netic ions and external field we have to setup Dyson’s equa-
tions for the phonon propagators of doubly degenerate a,o
modes. As a first step, for better understanding of the a-o
coupling term in Eq. �6� we treat the case without 4f-phonon
coupling and magnetic field. Then the phonon propagator is
simply given by
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D−1�q,�� =

1

2�q
a ��2 − �q

a2� − �q

− �q
�

1

2�q
o ��2 − �q

o2� � , �10�

where the diagonal elements are the unperturbed inverse
phonon propagators for a,o modes. The nondiagonal terms
mix the bare modes to the true vibrational modes whose
frequencies are obtained from det�D−1�=0 or

��2 − �q
a2���2 − �q

o2� = 4�q
a�q

o
�q
2. �11�

This leads to renormalized dispersions for both modes. Since
we may assume �q

a ��q
o, at least in the long-wavelength

limit the above equation leads to

�̃q
a = �q

a�1 − 2

�q
2

�q
o2

�q
o

�q
a � ; �̃q

o = �q
o�1 + 2


�q
2

�q
o2

�q
a

�q
o� .

�12�

This shows the repulsion of a and o modes due to their in-
teraction. In the long-wavelength limit where �q

a =vaq and
�q

o =�o−Dq2 we obtain a renormalized sound velocity for
the acoustic mode

ṽa = va�1 −
2
̃2

�o
� = va�1 −

1

2
Ẽ2� , �13�

where 
̃2��E /4M�2 / �va
2�o� and Ẽ2=4
̃2 /�o is the dimen-

sionless a-o coupling constant. The complementary correc-
tion to the optical phonon dispersion may be expressed as

�̃q
o =�o− D̃q2, where

D̃ = D�1 −
2

D
� 
̃va

�o
�2� . �14�

Thus the a-o coupling of acoustic strains and internal strains
characterized by the constant E leads to a reduction in sound
velocity and a reduced dispersion of the optical mode.

Now we treat the full problem with magnetoelastic inter-
actions included. We will show that the a-o coupling �E�
plays an essential role in the acoustic Faraday rotation
mechanism. For finite field and ga ,go�0 the two polariza-
tions have to be included explicitly for both modes. Then the
total phonon propagator may be written as a 4�4 matrix

D−1�q,�� = � Da
−1 − �q

− �q
† Do

−1 � , �15�

where the diagonal 2�2 blocks are given by the following
expressions �the momentum label q has been omitted for
simplicity�:

Ds
−1��� =

1

2�s
��2 − �s

2 − 2�sSd
s��� − 2i�sSh

s���
2i�sSh

s��� �2 − �s
2 − 2�sSd

s���
� ,

�16�

where s=a,o is the mode index. Furthermore the nondiago-
nal block describing a-o coupling is given by

���� = � �̂1 − Sh���

Sh��� �̂1
� �17�

with �̂= i�
�
+Sd�. This matrix is anti-Hermitian with �†

=−�.The diagonal �Sd
s� and nondiagonal �Sh

s� magnetoelastic
self energies for a given mode �s=a,o� and Sh ,Sd for the a-o
coupling are obtained as8,13

Sd
s��� =

1

2
�sg̃s

2��ÔxzÔxz���� ; Sh
s��� =

1

2
�sg̃s

2��ÔxzÔyz���� ,

Sd��� =
1

2
��a�o�1/2g̃2��ÔxzÔxz���� ;

Sh��� =
1

2
��a�o�1/2g̃2��ÔxzÔyz���� . �18�

we defined g̃= �g̃ag̃o�1/2 and Ô	�=O	�− �O	��. The double
brackets denote the dynamical susceptibility which are ex-
plicitly given in Sec. IV. Furthermore we used the definitions

N
gaQq
a 
2 =

1

2
vaqg̃a

2 or g̃a
2 =

ga
2

caVc
,

N
goQq
o
2 =

1

2
�og̃o

2 or g̃o
2 =

go
2

M�o
2 , �19�

where ca=�va
2 is the elastic constant �in the cubic garnets

ca=c44� with �=M /Vc being the mass density �M ,Vc=unit
cell mass and volume, respectively�.

The new phonon frequencies modified by magnetoelastic
coupling as well as the a-o coupling are then obtained by
finding solutions of det D−1�q ,��=0. For that purpose it is
convenient to transform the matrix propagator to circular po-
larized phonon coordinates L�+� and R�−� according to �+

= 1
�2

��x− i�y� and �−= i
�2

��x+ i�y� for acoustic and similar
for �� circular optical modes. Then we can regroup the 4
�4 propagator in pairs of ��− ,�−� and ��+ ,�+� modes
which leads to the decoupled 2�2 circular-mode propaga-
tors

D�
−1�q,�� =


1

2�aq
��2 − �̃aq

�2� − �q
�

− �q
�� 1

2�oq
��2 − �̃oq

�2� � ,

�20�

where the renormalized circular-mode frequencies are given
by �s=a,o�

�̃sq
� = �̃sq

2 � 2�sqSh
s��� ,

�̃sq
2 = �sq

2 �1 −
2

�sq
Sd

s���� �21�

and the effective a-o coupling is obtained as
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�q
� = i�
�q
 + Sd��� � Sh���	 . �22�

The last two terms in this equation are the dynamical correc-
tion caused by magnetoelastic interactions to the static back-
ground a-o coupling �q. The total remaining a-o coupling in
Eq. �20� may be easily diagonalized by finding the zeroes of
the determinant of the inverse 2�2 propagators. This leads
to the secular equations

��2 − �̃aq
�2���2 − �̃oq

�2� = 4�aq�oq
�q
�
2. �23�

For the acoustic modes we may approximate �a� �̃aq
��̃oq. This leads to the renormalized circular-mode frequen-
cies

�a
2 = �̃aq

2 � 2�aq
Sh

a��aq� − 4�aq�oq
�q
�
2

1

ãoq
�2 . �24�

The equivalent relations for the circular optical modes will
not be considered further here. In the following we neglect
the last term in Eq. �22� because for �→0 Sh����� and
therefore it is negligible compared to Sd���.

IV. FARADAY ROTATION ANGLE

From the above result we may easily compute the Faraday
rotation angle. In the Faraday configuration the frequency �a
is fixed and L,R modes have different wave numbers qL , qR,
which may be derived from Eq. �24� as

�a
2 = ṽa

−2qL
2 − 2vaSh

a��a�qL,

�a
2 = ṽa

+2qR
2 + 2vaSh

a��a�qR, �25�

where the renormalized sound velocities of L,R acoustic
modes are obtained in the limit �aq→0 as

ṽa
�2 = ṽa

2�1 − Ẽt
2va

2

ṽa
2

�o
2

�̃o
�2� ,

ṽa = va�1 − g̃a
2��ÔxzÔxz��0�	 ,

Ẽt = Ẽ + g̃��ÔxzÔxz��0� �26�

and the split optical-mode frequencies �̃o
�2 are given by Eq.

�21�. Here we defined the dimensionless bare a-o coupling

constant by Ẽ= �ẼaẼo�1/2 with Ẽa=E / �caVc� and Ẽo

=E / �M�o
2�, which is equivalent to Ẽ2=4
̃2 /�o �see below

Eq. �13�	. We note again that Ẽt contains the dynamical mag-
netoelastic corrections to the bare a-o coupling �g̃
= �g̃ag̃o�1/2	. These corrections may be strongly field depen-
dent as discussed in Sec. V. Under the approximation ��
= 1

2 �qL−qR��
1
2 �qL+qR��q we obtain the acoustic Faraday

rotation

�� =
2vaSh

a

ṽa
+2 + ṽa

−2 +
1

2

ṽa
+2 − ṽa

−2

ṽa
+2 + ṽa

−2q . �27�

Using the explicit form of the quantities appearing in this
expression and q=

�a

va
= 2�

� , where � denotes the ultrasonic
wavelength we get the final result

�� = �a� + �o� =
�

�
�va

v̂a
�2�g̃a

2��ÔxzÔyz���a
� + Ẽt

21

2
� 1

�̂o
−2 −

1

�̂o
+2��
�28�

with split optical phonon frequencies and renormalized
sound velocities explicitly given by

�̂o
�2 = 1 + g̃o

2��ÔxzÔxz���o
� � g̃o

2��ÔxzÔyz���o
� ,

v̂a
2 = v̂a

2�1 − Ẽt
2�va

ṽa
�21

2
� 1

�̂o
−2 +

1

�̂o
+2�� . �29�

The Faraday rotation in Eq. �28� consists of two parts. The
first one, �a� ��g̃a

2� which was already discussed in Ref. 8 is
due to the direct coupling of long-wavelength strains to the

quadrupole moments of the 4f shell. The second �o� ��Ẽt
2�

and indirect part derived in the present work is due to the
coupling of long-wavelength strains to the internal optical
displacements, which in turn couple to the 4f quadrupoles.
The latter leads to a splitting of circular polarized optical

phonons and subsequently �via Ẽt� to a splitting of circular
acoustic modes. Therefore an indirect optical phonon contri-
bution �o� to the acoustic Faraday rotation appears. We note
that the common prefactor �

� ��a in Eq. �28� is linear in the
sound frequency. Since the first term in the bracket is also
��a �see Eq. �30�	 one has �a���a

2 for the direct acoustic
contribution. This is because for q→0 the acoustic-mode
frequencies and therefore also the splitting of +,− �L,R�
acoustic modes has to vanish. This contributes the additional
frequency factor in �a�. This is different for the indirect part
�o�. Because the splitting of optical �̂o

� modes stays finite for
q→0 the second term in the brackets of Eq. �28� is simply a
�field-dependent� constant and one finally gets �o���a. For
small �a the second part will always dominate and one has
����a for the total rotation angle. This solves the long-
standing puzzle of the frequency dependence of acoustic Far-
aday rotation in paramagnetic 4f compounds.

In the following we give more explicit forms for the Far-
aday rotation by using the expression for the quadrupolar
susceptibilities8,13:

��Ô	Ô����� = �
lm

�
�̃lm�pl − pm�

�2 − �̃lm
2

S	�
lm + �kT�−1�

l

pl�l
Ô	
l�

��l
Ô�
l���0,

��Ô	Ô����� = �
lm

�
��pl − pm�

�2 − �̃lm
2

A	�
lm . �30�

Here �̃lm= Ẽl− Ẽm are the excitation energies between CEF

levels in an external field and pl=e−Ẽl/kT /�ne−Ẽn/kT are their
occupation numbers. The prime denotes summation over

terms with Ẽl� Ẽm. Furthermore Ô	=O	− �O	� and the
�anti� symmetrized matrix elements are defined by

S	�
lm =

1

2
��l
O	
m��m
O�
l� + �m
O	
l��l
O�
m�	 ,
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A	�
lm =

1

2i
��l
O	
m��m
O�
l� − �m
O	
l��l
O�
m�	 . �31�

It is implied here that 
l� , 
m� denote the eigenstates in the
external field. In our case 	 ,�=xz ,yz and the notation will
be simplified to Axzyz=Axy and Sxzxz=Sxx, etc. Expanding the
inverse of the split optical frequencies �̂o

�2 in the magneto-
elastic coupling g̃o

2 in Eq. �28� and inserting the expressions
for quadrupolar susceptibilities we obtain after some algebra
the Faraday rotation angle ��=�a�+�o� as

�� =
�

�
�va

v̂a
�2�g̃a

2�
lm

�
�a�pl − pm�

�a
2 − �̃lm

2
Axy

lm

+ ��o

�̃o
�4

�Ẽtg̃o�2�
lm

�
�o�pl − pm�

�o
2 − �̃lm

2
Axy

lm� . �32�

Remembering that �
� ��a this formula shows explicitly that

the first part �a���a
2 because we may take �a→0 in the

denominator: a typical sound frequency of �a=�a /2�
=0.5 GHz corresponds to �a=0.15 K. This energy is much
smaller than all other energy scales involved, in particular
smaller than the lowest CEF excitation energy �t=57.3 K
�see Sec. V� and even smaller than the thermal energy at the
measuring temperature 1.4 K which gives the scale of the
CEF broadening. Therefore the above approximation is jus-
tified and the �a frequency dependence of the first part is
simply given by �� /���a��a

2. In the second part due to
indirect coupling to optical phonons the acoustic frequency
appears only through the prefactor �� /�� leading to a linear
behavior �o���a. One may estimate under which condition
the linear �indirect optical� part dominates the quadratic �di-
rect acoustic� part of the rotation angle. This happens when

g̃a
2�a� �

�o

�̃o
�4�Ẽtg̃o�2�o. Using �̃o��o and assuming g̃a

� g̃o , Ẽt� Ẽ one obtains the condition Ẽ� ��a /�o�1/2. For
the typical �a /2�=0.5 GHz and �o=150 K this means we

must have Ẽ�0.9�10−2. Assuming from Eq. �13� that one
has a modest change in sound velocity �va− ṽa� /va�0.5

�10−2 due to the bare a-o coupling only we get Ẽ=0.1,
which is much bigger than the required value. Therefore we
conclude that under any noticeable a-o coupling the indirect
���a� contribution to the Faraday rotation will dominate the
direct acoustic one ���a

2� and the sum, i.e., the total ob-
served Faraday rotation will be linear in �a to a good ap-
proximation.

The fact that optical phonon frequency �̃o and sound ve-
locity v̂a are renormalized by the coupling to the diagonal
quadrupolar susceptibilities enters only in a nonessential way
through the modification of prefactors in Eq. �32�. Neverthe-
less we give their explicit expressions for completeness. The
renormalized optical phonon frequency is obtained from the
self-consistent solution of

�̃o
2 = �o

2�1 − g̃o
2�

lm
�
�̃lm�pl − pm�

�̃o
2 − �̃lm

2
Sxx

lm� �33�

and the renormalized sound velocity from

v̂a
2 = va

2�1 − Ẽt
2 − g̃a

2��
lm

�
�pm − pl�

�̃lm

Sxx
lm + �kT�−1�

l

pl�l
Ôxz
l�

��l
Ôxz
l�� − �Ẽg̃o�2�
lm

�
�̃lm�pl − pm�

�̃o
2 − �̃lm

2
Sxx

lm� �34�

Note that the modified v̂a has three correction contributions:
the first is due to the renormalized a-o coupling of elastic
strains and internal displacements �see also Eq. �13�	 while
the second is due the direct magnetoelastic coupling and the
third one due to indirect coupling to 4f quadrupoles via the

optical modes. In the adiabatic limit when �̃o��̃lm the third
term has the same form as the second and just adds to an

effective magnetoelastic coupling ĝa
2= g̃a

2+ �Ẽg̃o�2. This was
already noticed, e.g., in Ref. 9 where it was remarked that the
contribution of the a-o coupling leads to an anomalously
large ĝa

2 as obtained from the temperature dependence of the
sound velocity. It should be noted, however, that the adia-
batic condition does not hold for TGG where the optical-
mode frequency is quite large as compared to the important
CEF transition energies �Sec. V�. In this case the exact for-
mula for v̂a�T� given in the above equation has to be used.

A remark on the solution of Eq. �33� is appropriate. In the

nonresonant case where �o
2� �̃lm

2 the renormalized �̃o and v̂a
2

may be obtained by inserting the unperturbed �o on the right
hand side of Eqs. �33� and �34�. Due to the change in CEF

levels with applied fields the resonance condition �o
2� �̃lm

2

for some excitation Ẽl�→ Ẽm� may be achieved at a special
field ho. In this case optical phonons and the CEF excitation
will form “mixed modes,” which have no longer pure
phononic or CEF excitation character. Then Eq. �33� has to
be solved self-consistently. Neglecting the nonresonant con-

tributions of all other excitations and defining �̃l�m�
r

=�l�m��pm�− pl��Sxx
l�m��0 one obtains

�̃o
2 =

1

2
��o

2 + �̃l�m�
2 � + �l�m��1

4
��o

2 − �̃l�m�
2 �2 + g̃o

2�o
2�̃l�m�

r �1/2
,

�35�

where �l�m�=sgn��o
2− �̃l�m�

2 �. Passing through the anticross-

ing point of CEF excitation �̃l�m��h� and phonon frequency
�o the frequency of the phonon-type branch changes only by
a small finite amount given by ��o /�o�T→0

2

=2�Sxx
l�m�g̃o

2 /�o�1/2�1 as long as g̃o
2 /�o�1.

V. APPLICATION TO TGG: CEF STATES AND THEIR
ZEEMAN SPLITTING

A prerequisite to calculate the quadrupolar susceptibilities
that enter the Faraday rotation angle is the knowledge of
CEF states and their Zeeman splitting in a magnetic field.
The Oh

10 space-group symmetry of TGG leads to a D2 site
symmetry of Tb3+ �J=6� non-Kramers ions. The correspond-
ing CEF level scheme has been given in Ref. 15. It may be
approximated by a cubic doublet-triplet-singlet level scheme

3��d=0 K�−
5��t=57.3 K�−
2��s=190 K� �Ref. 16�
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obtained for parameters W=−24.5 and x=0.8525 from the
tables of Ref. 17. Higher lying CEF states are neglected.

As far as eigenstates 

̃	
n� in a magnetic field are con-

cerned it is important to note that the linearly split triplet

states 

̃5
1,3�= 

5

1,3� and the field-independent doublet compo-

nent 

̃3
2�= 

3

2� have the unperturbed wave functions �Fig. 1�
whereas the split-off ground state is mixed with a triplet
component according to



̃3
1 = 

3

1� +
m35

z h

�t


5

2� . �36�

The inclusion of the orthorhombic �D2� CEF term for general
field strength requires numerical calculations similar to Ref.
15. Now we need the matrix elements of the quadrupolar
operators Oxz and Oyz of Eq. �9� in the basis of Zeeman split

CEF eigenstates 

̃	
n�. They only have to be considered in the

subspace S3= �

̃3
2� , 

5

1� , 

5
3�� where they have nonzero ma-

trix elements. The latter are given by

m11 = �
5
1
Oxz

̃3

1� = − i�
̃3
1
Oyz

5

1� ,

m13 = �
5
3
Oxz

̃3

1� = i�
̃3
1
Oyz

5

3� . �37�

Using the �anti� symmetrized matrices A	�
lm ,S	�

lm from Eqs.
�A3� and �A4� in Appendix A this leads to explicit quadru-
polar susceptibilities for the TGG CEF states

��ÔxzÔxz���� = ��ÔyzÔyz���� = m11
2 Rd

−����p3
1 − p5

1� + m13
2 Rd

+���

��p3
1 − p5

3� ,

��ÔxzÔyz���� = − ��ÔyzÔxz���� = m11
2 Rh

−����p3
1 − p5

1� − m13
2 Rh

+���

��p3
1 − p5

3� . �38�

Note that for T→0 the CEF occupation differences �pl
− pm� approach unity. Furthermore we defined

Rd
���� =

2�t
�

�t
�2 − �2 ; Rh

���� =
2�

�t
�2 − �2 . �39�

We have shown before that because of the different fre-
quency dependences �a���o� for acoustic frequencies. There-
fore ����o� and we will discuss only the latter in the fol-
lowing. For T→0 we can write, using Eq. �A6�

�o� =
�

�
�va

v̂a
�2

Fo��o,H� ,

Fo��o,H� = �̃t
2��ÔxzÔyz���o

� = �̃t
2mQ

2 �m̂−
2Rh

−��o,H�

− m̂+
2Rh

+��o,H�	 ,

�̃t
2 = �̃o

2�1 + �ao�m̂−
2Rd

−�0,H� + m̂+
2Rd

+�0,H�	� �40�

with �̃o
2= �

�o

�̃o
�4�Ẽg̃o�2 and �ao=

2mQ
2 g̃2

Ẽ
. In TGG we have �t

−

��o at zero field. However �t
− increases linearly with field

strength �m55
z �0� and will eventually cross the optical pho-

non frequency �Fig. 1�. Then the Faraday rotation becomes
large due to an optical phonon resonance in R−��o ,H�. Simi-
larly �t

+ decreases with increasing field and vanishes when
the lowest triplet component crosses the ground state. In this
case the effective a-o coupling strength diverges leading to
an additional field dependence in the Faraday rotation caused
by Rd

+�0,H�. To avoid singular behavior in the resonance
case a finite linewidth of phonons �
� or CEF excitations
�
t

�� should be introduced. This can easily be done by re-

placing Rd,h
	 �� ,H� by the averaged quantities R̃d,h

	 �� ,H�
which contains the finite linewidths �see Appendix B�. This
leads to the final formula for the Faraday rotation in TGG,
which will be used for numerical calculation

�o� = �̂o��̂t
2�H�� 2�o

2m̂−
2��t

−2 − �o
2 − 
2	

��t
−2 − �o

2�2 + 2
2��t
−2 + �o

2� + 
4

−
2�o

2m̂+
2��t

+2 − �o
2 − 
2	

��t
+2 − �o

2�2 + 2
2��t
+2 + �o

2� + 
4� . �41�

Here the prefactor �̂t
2= �̃t

2 / �̃o
2 describes the field dependence

of the effective a-o coupling strength. It is determined by

�ao= �2mQ
2 g̃2 / Ẽ� which gives a measure of the magnetoelastic

corrections relative to the bare a-o coupling Ẽ. We obtain
from the last of Eq. �27�

�̂t
2�H� = 1 + �ao�m̂−

2 2�t
−

�t
−2 + 
t

−2 + m̂+
2 2�t

+

�t
+2 + 
t

+2� , �42�

If we ignore these corrections then �̂t
2�H�=1 in Eq. �41�.

Furthermore the scale of the rotation angle is set through
�̂o���a=2va

�
� which is explicitly given by

0 0.1 0.2 0.3 0.4 0.5
h/∆

t

-2

-1

0

1

2

3

4
E

n α/∆
t

ω0

Γ2

Γ5

Γ3 ∆− ∆+
tt

FIG. 1. Zeeman splitting of simplified cubic 
3�0�−
5��t�
−
2��s=3.3�t� level system. Only transitions between 
3-
5 states
corresponding to full lines have nonzero quadrupole matrix ele-
ments �Eqs. �A3� and �A4�	 and contributions to the quadrupole
susceptibility. The empirical matrix elements used for the Zeeman
splitting are m55

z =−4.5, m35
z =−2.0, and m25

z =0.0. Field scale:
H=28.6 T for h /�t=0.5. The 
3

1-
5
1 excitation ��t

−� crosses the
lowest optical phonon mode ��o=2.5�t� around ho /�t�0.28
��17 T� leading to a resonance in �o��h� �Fig. 2�.
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�̂o� =
�

�
�va

v̂a
�2 �mQ�̃o�2

�o
. �43�

Note that the Faraday rotation is no longer singular for finite
line widths 
 and 
t

�. However it develops a resonant be-
havior as function of field which is determined by two ef-
fects. The optical phonon resonance with the singlet-triplet
excitation at �t

−�H�=�o and the field dependence of the ef-
fective a-o coupling constant in Eq. �42� when �t

+�H�=0. In
TGG these conditions are fulfilled for approximately the
same field H�17–20 T �Fig. 1�. The above treatment may
easily be generalized to include coupling to more than one
optical phonon by summing over individual nth phonon con-
tributions like Eq. �41� each characterized by a frequency
�o

�n� and an effective a-o coupling strength �̃o
�n� as well as

�ao
�n�.

VI. NUMERICAL RESULTS AND DISCUSSION

Due to the low D2 site symmetry the precise form of CEF
states is not known with certainty. The cubic approximation
proposed in Ref. 16 is problematic because it leads to a lin-
ear Zeeman splitting of 
5 triplet which is far too small as
compared to the calculation using the full D2 CEF potential
performed in Ref. 15. For a calculation of the Faraday rota-
tion angle according to Eq. �32� within the latter approach it
would be necessary to obtain the field-dependent wave func-
tions and energy levels numerically. To gain a principal in-
sight a more simplified empirical approach was used here,
which allows to obtain closed expressions for the rotation
angle in Eq. �41�. We kept the simplicity of the cubic level
scheme and wave functions following Ref. 16 and treated the
dipolar and quadrupolar matrix elements as empirical param-
eters. The former may be fixed to obtain the qualitative level
splitting and the latter enter only as scale factors that deter-
mine the strength of the resonance behavior of ���h�.

The simplified CEF level scheme is shown in Fig. 1. The
essential states for the Faraday rotation are the split-off 
3

1

ground-state component and the two linearly split 
5 states.
Quadrupolar transitions between them lead to the rotation

angle according to Eq. �41�. While the transition energy �t
+

decreases, �t
− �m55

z �0� increases with field strength. The
field ho where the latter crosses the optical mode at �o
=2.5�t is indicated by an arrow.

The Faraday rotation angle is shown in Fig. 2. It vanishes
for h→0 which is in contrast to the Faraday rotation for
ferromagnets where the time-reversal symmetry is already
broken by the spontaneous magnetization. Under such con-
dition the rotation angle is nonzero even at zero external
field.2,18 At the field where �t

−�ho���o the rotation angle in
Fig. 2�a� becomes resonant and changes sign when the field
sweeps across. This is enhanced by the ground-state level
crossing when �t

+=0 at a slightly larger field which influ-
ences the effective renormalized a-o coupling �Fig. 2�b�	.

The qualitative behavior of Faraday rotation in Fig. 2 is
very similar to the one observed in ferromagnets such as
Y3Fe5O12 �YIG�.2 The shape of the resonance depends on the
phonon and CEF excitation linewidths and its amplitude is
enhanced by the opposite field dependence of the quadrupo-
lar matrix elements m̂� �Eq. �A6�	 as well as a-o coupling
renormalization �ao �Fig. 2�.

In an experiment the rotation angle ���h� cannot be ob-
served directly but is inferred from the intensity modulation

I�h;z0� = A2 cos2����h�z0	 �44�

of the x polarization component of the propagating sound
wave as it is detected at the end of the sample of length z0.
The typical intensity oscillations are shown in Fig. 3. When
the field sweeps through the resonance region the Faraday
rotation becomes large and therefore the oscillations become
rapid. This corresponds qualitatively to the experimental ob-
servations where the resonance is around H=17–20 T. In
the latter the amplitude in the resonance region will also be
strongly damped which is not described by the present treat-
ment. Therefore instead of measuring the amplitude or inten-
sity one may also measure the complementary damping
which is large in the resonance region and also exhibits the
oscillations due to Faraday rotation. If one has more optical
phonons with different �o

�n� which couple to the acoustic
modes the region of rapid Faraday rotation may exist in a
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h/∆
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h/∆
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-15
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o/φ

’ o

^

(b)(a)

FIG. 2. Faraday rotation angle �o� / �̂o� as function of field strength ��o=2.5�t , 
=0.2�t�. Left �a�: the optical phonon resonance appears
around �t

−=�o �crossing with lowest optical phonon mode, Fig. 1�. Full curve: mQ� =0. Dash-dotted line: mQ� =0.2. The field dependence of
quadrupolar matrix elements enhances the Faraday rotation. The bare a-o coupling ��ao=0� is used in Eq. �42� Right �b�: rotation angle for
renormalized a-o coupling ��ao=0.05, dash-dotted line� in comparison with bare case ��ao=0, full line�. The enhancement factor �̂t

2�H�
�dotted line� leads to an additional field dependence due to level crossing �t

+=0 �Fig. 1� which is close to the optical phonon resonance
�t

−=�o. Here a CEF line width 
t=0.1�t is used.
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more extended field region. The damping of the Faraday am-
plitude in the optical phonon resonance region can, in prin-
ciple, be obtained by using the propagators with complex
optical phonon poles at �o+ i
 and solving for complex
wave numbers qL , qR.

Finally we mention that the present theory also explains
the Faraday rotation in the case of paramagnetic CeAl2
where the effect and its linear frequency dependence has first
been observed. In this compound a strong a-o coupling may
be concluded from the large temperature effects which point
to an enhanced effective magnetoelastic coupling due to op-
tical phonons.9 Indeed in CeAl2 the Ce atoms form a
diamond-type sublattice which has acoustic �T1u� and lowest
optical �T2g� phonons with the same E �C4v� symmetry for
wave vector q= �q ,0 ,0�. This enables the a-o coupling as in
TGG. In fact inelastic neutron scattering experiments19 found
that a-o coupling in this compound is strong enough to cause
a large anticrossing effect of acoustic and optical phonons for
q about halfway to the zone boundary. Therefore the Faraday
rotation model discussed here is also perfectly applicable for
this compound. It should be mentioned, however, that the
perturbative approach which was used here to solve Dyson’s
equations in an external field may not be adequate for CeAl2
due to bound-state formation of optical phonons and CEF
excitations caused by large magnetoelastic coupling.20

VII. CONCLUSION AND OUTLOOK

The origin of acoustic Faraday rotation in paramagnetic
4f compounds has remained mysterious for a considerable
time. Simple magnetoelastic theories consistently predicted
that the rotation angle per unit length should behave like
����a

2 whereas experimental results9,10 invariably have
shown that ����a in the case where different sound fre-
quencies �a have actually been used.

In this work we have found the origin of this discrepancy
and proposed a theoretical model for TGG which resolves
the issue. In non-Bravais lattices acoustic and optical
phonons may have the same symmetry with respect of the
group of the wave vector q. In this case long-wavelength
acoustic and internal optical displacements are intrinsically
coupled both via background elasticity and the magnetoelas-

tic coupling to CEF states. In such a case the acoustic Fara-
day rotation cannot be separated from the field splitting of
optical phonons in a magnetic field. This leads to indirect
contributions �o� to the former which are proportional to the
effective a-o coupling squared. These contributions were
shown to lead to a behavior �o���a in agreement with ex-
perimental observation. They dominate the purely acoustic
contribution �a���a

2 due to the smallness of sound frequen-
cies. Furthermore it was found that in TGG the crossing of
CEF triplet levels with the lowest optical phonons and with
the lowest doublet ground-state component leads to resonant
behavior in the Faraday rotation angle for a field strength
H�17–20 T. This has indeed been found in static- and
pulsed-field experiments.10

We believe the mechanism proposed here may be of more
general validity. Certainly it is present in CeAl2 where the
paramagnetic acoustic Faraday rotation was first found. In-
deed the diamond Ce sublattice of this compound ensures
that acoustic and low-lying optical phonons have the same
symmetry and are therefore strongly coupled for propagation
along the cubic axis. Because Ce3+ is a Kramers ion as op-
posed to Tb3+ its CEF level scheme and therefore details of
the theory are, however, quite different.

Finally we would like to propose that the field depen-
dence of optical phonons in TGG which approximately ex-
tend from 90–900 cm−1 should be investigated by IR ab-
sorption and Raman scattering in high fields. According to
our analysis there should be a field-induced splitting of some
of the doubly degenerate optical phonon modes which is
indirectly responsible for the acoustic Faraday rotation. The
observation of this splitting, in particular, for the low-
frequency optical modes would be a direct support for the
theory presented here.
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APPENDIX A

Here we derive the CEF energies and quadrupolar matrix
elements of the field-split TGG �cubic� level scheme. Using
the explicit form of CEF states given in the Lea, Leask, and
Wolf �LLW� tables,17 the real matrix elements of the dipolar
operator Jz in the Zeeman term are given by

m55
z = �
5

1
Jz

5
1� = − �
5

3
Jz

5
3� ,

m35
z = �
5

2
Jz

3
1� ,

m25
z = �
5

2
Jz

2� . �A1�

All other matrix elements vanish. The dipolar matrix ele-
ments calculated for the cubic CEF states are unreliable due
to the admixture of other states by the D2 part. Therefore we
treat them as empirical parameters to reproduce the qualita-
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FIG. 3. Intensity of the sound-wave component �Eq. �44�	 �x̂.
The rapid oscillations occur for fields with large Faraday rotation
angle �o� �Fig. 2�. Parameters are 
=0.2�t, mQ� =�ab=0, and �̂o�
=z0�1 �z0=sample length�.
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tive Zeeman splitting of triplet states. For magnetic field ap-
plied along a cubic axis the Zeeman energy is HZ=−hJz. Up
to second order in h the CEF level splitting and shifts of
doublet, triplet, and singlet are obtained as

Ẽ3
1 = �̃d = �d −

�m35
z h�2

�t
,

Ẽ3
2 = �d = 0,

Ẽ5
1,3 = �t � m55

z h ,

Ẽ5
2 = �̃t = �t −

�m25
z h�2

�s − �t
+

�m35
z h�2

�t
,

Ẽ2 = �̃s = �s +
�m25

z h�2

�s − �t
. �A2�

This leads to the symmetrized and antisymmetrized quadru-

polar matrices of Eq. �31� in the S3= �

̃3
2� , 

5

1� , 

5
3�� sub-

space according to

Sxz,xz = Syz,yz = 
 0 m11
2 m13

2

m11
2 0 0

m13
2 0 0

� ; Axz,xz = Ayz,yz = 0,

�A3�

Axz,yz = − Ayz,xz = 
 0 − m11
2 m13

2

m11
2 0 0

− m13
2 0 0

� ; Sxz,yz = Syz,xz = 0.

�A4�

The excitation energies associated with nonzero matrix ele-
ments between ground-state and two excited triplet compo-
nents are given by �Fig. 1�

�t
− = Ẽ5

1 − Ẽ3
1 = �t�1 − � + �2	 ,

�t
+ = Ẽ5

3 − Ẽ3
1 = �t�1 + � + �2	 , �A5�

where �=
m55

z h

�t
and �=

m35
z h

�t
. Furthermore the field-dependent

quadrupolar matrix elements may be written as

m11 = mQ�1 −
mQ�

mQ
�� � mQm̂−,

m13 = − mQ�1 +
mQ�

mQ
�� � − mQm̂+, �A6�

where mQ is the zero-field singlet-triplet quadrupolar matrix
element which may be expressed by the coefficients of the
singlet-triplet wave functions. It enters into the proper scale
Eq. �43� of the rotation angle.

APPENDIX B

Finally we give the frequency dependences of diagonal
and off-diagonal quadrupolar susceptibilities, which have
been averaged over the phonon and CEF spectral line shapes.
For the diagonal susceptibilities we introduce a linewidth 
t

�

for the relevant triplet excitations �t
�. Then we have ��a

→0�

R̃d
	��a,H� = �

−�

�

d�

t

	/�
�� − �t

	�2 + 
t
	2

2�

�2 − �a
2 =

2�t
	

��t
	2 + 
t

	2�
.

�B1�

Likewise for the nondiagonal susceptibilities we introduce a
linewidth 
 for the optical phonon with frequency �o leading
to �	=��

R̃	��o,H� = �
−�

�

d�

/�

�� − �o�2 + 
2

2�

�t
	2 − �2

=
2�o��t

	2 − �o
2 − 
2	

��t
	2 − �o

2�2 + 2
2��t
	2 + �o

2� + 
4 . �B2�

These expressions are used in Eq. �40� to obtain the result in
Eqs. �41� and �42�
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